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LETTER TO THE EDITOR 

Macroscopic quantum tunnelling in antiferromagnets 

I V Krive and 0 B Zaslavskii 
Kharkov State University, Kharkov. Ukraine 310077. USSR 

Received 19 October 1989, in final form 21 February 1990 

Abstract. Macroscopic quantum tunnelling in a single-domain antiferromagnetic particle is 
considered using different models for the antiferromagnet: an effective two-spin model and 
an anisotropic o-model (large-spin continuum limit of the Heisenberg Hamiltonian). For 
both models the probability of tunnelling at low temperatures has been calculated. The 
tunnelling rates obtained in these cases agree qualitatively when expressed in the terms of 
the corresponding quantities. We have also estimated the tunnelling rate for a false-vacuum 
decay in an antiferromagnet with a small fourth-order anisotropy. 

Quantum mechanics is applicable to both macroscopic and microscopic objects. 
Recently this well known fact was experimentally confirmed in studying the phenomenon 
of macroscopic quantum tunnelling (MQT) (Leggett et af 1987). One must distinguish 
between two types of tunnelling process. The first (MOT) is a false(metastab1e)-vacuum 
decay at low temperatures, while the second is tunnelling in small systems. The false- 
vacuum decay brings about the formation of an energy-favourable (stable) phase. 
The tunnelling in finite systems results in a small splitting of the ground-state energy 
(macroscopic quantum coherence). 

Recently another rich field for MQT study has appeared-spin tunnelling. The mag- 
netization in small ferromagnetic particles can tunnel through a classically forbidden 
region owing to subbarrier rotation as a single quantum variable, when the dynamics of 
the individual spins are suppressed (Chudnovsky and Gunter 1988a). This type of 
tunnelling differs somewhat from the usual mechanism in quantum mechanics owing 
to the quantum nature of spin compared with that of ordinary coordinate variables 
(van Hemmen and Siito 1986). Nevertheless, for a wide class of anisotropic spin systems, 
finding the energy spectrum and the problem of spin tunnelling can be approximately 
(Enz and Schilling 1986a, b) or even rigorously (Zaslavskii et a1 1983, Scharf eta1 1987, 
Zaslavskii 1990) reduced to the usual picture of a particle moving in a double well. A 
similar situation arises in the many-particle case (the Heisenberg model with weak 
anisotropy), when the exchange interaction causes the formation of a collective magnetic 
moment proportional to the total particle number. Meanwhile, the dynamics of such an 
effective-spin system are governed by the usual one-dimensional Schrodinger equation 
(Vekslerchik et af 1989). (Note that another type of rigorous application of the one- 
dimensional Schrodinger equation to many-particle systems is in the Lipkin-Meshkov- 
Glick model (Zaslavskii 1985).) 

Quantum nucleation of magnetic bubbles is another type of tunnelling process, which 
can occur in continuous models. These bubbles correspond to domains of magnetization 
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in a stable phase surrounded by a metastable phase. The decay rate of a false vacuum 
has been calculated by Chudnovsky and Gunter (1988b) and Caldeira and Furuya (1988) 
for anisotropic ferromagnetic systems. 

The purpose of our paper is to discuss both the tunnelling effects described above 
(macroscopic quantum coherence and the decay of a false vacuum) for antiferromagnetic 
(AFM) systems (neglecting dissipation), The discrete symmetry of anisotropic infinite 
AFM systems is broken spontaneously in the Nee1 phase. In small AFM particles, tunnelling 
removes the degeneracy of the ground state and restores the full symmetry of the 
Lagrangian. 

The role of the macroscopic variable tunnelling through the barrier between two 
minima of the corresponding effective potential is now played by the AFM vector. The 
Lagrangian for the AFM vector is known to be quadratic in the time derivative and thus 
is suitable for instanton method calculations. 

First we present a simple ‘toy’ model of an antiferromagnet for which the MQT reduces 
to the well known quantum mechanical problem. Then a vacuum-to-vacuum tunnelling 
in a finite-length AFM chain is considered using a realistic continuum model-a-model 
with &term. The resulting expressions for the tunnelling rate are proved to be equal for 
both models. Tunnelling in small particles involves a splitting of the ground state and in 
this way affects the low-frequency properties of such samples. 

We begin with the formation of a simple model of two interacting spins of the same 
value So. This can correspond, for example, to two sublattices in small AFM particles. 
The Hamiltonian has the form 

H = &J[$(M2 - L’)  - ~ c Y L ~ ] .  (1) 

Here M = SI + S 2 ,  L = S ,  - S 2 ,  M being the magnetization and L the AFM vector, while 
J > 0 and CY > 0. The last term in (1) is connected with magnetic anisotropy. 

Parametrizing L by the spherical angles 8 and cp, one can easily obtain that for 
CY -e 1 and M 2  L 2  the classical equations of motion take the form 

@ sin2 6 = constant 8 = 8 sin(20) ( @ ?  - 0:) (2) 
where oo = 2 3 i r J S , ~ 1 ~ 2 .  

These classical equations can be derived using the Lagrangian 

92 = J - ’ [ ( +  sin2 e)@’ + 86‘ - $os sin’ 191. (3) 
According to equation (3), a classical ground state of the system turns out to be 

twofold degenerate (cp = constant, 0 = 0 or 8 = n). It corresponds to two energy- 
equivalent directions of L (along the z axis and in the opposite direction). When quantum 
tunnelling is taken into account, one can obtain the ground-state splitting AEo. This 
value is determined by the tunnelling action W: 

( U ( 0 )  = 2 sin2 8 being the dimensionless potential energy). Following Coleman (1979), 
we have 

A E ,  - o0w1/2 exp(-W) - J S ~ / ~ C Y ~ / ~  e x p ( - 4 6 ~ ) .  (5  1 
If the anisotropy has a two-axis nature so that the term JPL; (/3 > 0 )  in equation (1) is 
included, one must change CY to CY + /3 in equation (5). Note that the parameters of the 



Letter to the Editor 9459 

problem must satisfy the conditions S-* 4 N G 1 since equation ( 5 )  is described in the 
quasiclassical approximation (AEo G E o ) .  

The Hamiltonian (1) is the quantum mechanical ‘toy’ model for a Nee1 anti- 
ferromagnet. Nevertheless it describes correctly, as we shall see below, the tunnelling 
processes in small AFM particles. In the microscopic approach we must start from the 
Heisenberg Hamiltonian 

where a ,  b and J are all positive quantities, S 2  = S(S + 1) and the sum is over near- 
neighbour sites only. 

We are interested in the long-wave (semiclassical) limit of the model (6) when 
the quantum lattice Hamiltonian may be changed for the simple continuum classical 
Hamiltonian. 

Let us consider first a one-dimensional spin chain in the large-S limit. According to 
Haldane (1983) and Affleck (1985, 1986), the low-energy part of the quantum Ham- 
iltonian (6) coincides in this approximation with the well known O(3) a-model with 8- 
vacuum. The Lagrangian density of this model assumes the following standard form 
(Rajaraman 1982): 

Y = (1/2g)(Id,,nl’ + m?n5) + (8,\/8n)&b”’n’ ( d p  x d,n) .  (7) 

Here n is the AFM vector, p = ( r ,  x )  and E“’ = - E’’ / ‘ .  The couplings in (7) are connected 
with the parameters of the Heisenberg Hamiltonian by the simple relations (Affleck 
1985) 

l/g = S/2 8, = 2nS m = di(a+ b ) A - ‘  c = 2SJA (8) 

where A is the lattice spacing. We have adopted in (7) convenient units with h = C = 1. 
Thequantitiesm and Cin (7) and (8) are themassandvelocityofthe small fluctuations 

of the AFM vector (spin waves), as can be seen from (7). The coefficient by which Lf  is 
multiplied in the Hamiltonian (1) corresponds to the following values of the Ising 
anisotropy in (6): a = 2 a ,  b = N. In this case the activation energy of the spin waves 
given by U ,  = mc = 6 S J  coincides with the characteristic energy u0 in (2) up to a 
numerical factor. 

In terms of the angle variables 8(x ,  t )  and q ( x ,  t )  the Lagrangian (7) takes the form 

2 = (l/g)[(isin* e ) ( a P q ) ’  + l(a,e)* - tm? sin? 81 

The equations of motion for the dynamical variables (which are spatially homo- 
geneous fields 8( t ) ,  q(t))  derived from equation (9) are identical with equation (2) as 
the last term in (9) (&vacuum) does not disturb the local dynamics of the system that 
we are dealing with. It is precisely this fact that justified the usefulness of the ‘toy’ model 
(1) for describing the tunnelling in the small AFM particles. 

For a finite-length ( L )  spin chain, the classical vacua y = constant, 8 = 0 and q = 
constant, 8 = n are separated by the potential barrier of finite approximate value 
Lm2/g and vacuum-to-vacuum tunnelling is possible. It is plausible to assume (we prove 
this assumption below) that the minimum of the Euclidean action is realized for the 
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spatially homogeneous instanton trajectories (the imaginary time solutions of the Euler- 
Lagrange equations) 

~1 = constant cos[O(t)] = t anh(mt) .  (10) 

WO = LE, E ,  = 2m/g (11) 

The  action for this trajectory can be expressed as 

where E, is the rest energy of the AFM vector topological soliton (kink) (Mikeska 1980, 
Affleck 1985). 

Because of the  vacuum tunnelling the ground-state energy of the spin chain is 
described by the value 

AV, - (m/L)Wf/’ exp( - W,). (12) 

It should be compared with the tunnelling splitting for the two-spin model (1). Note that 
both actions will agree numerically when So in ( 5 )  is replaced by the effective total ‘spin’: 

S()  = Seff = ( v q 8 ) N S  (13) 

where N = L / A  is the number of sites in the spin chain. One  now must prove that the 
spatially inhomogeneous instantons increase the Euclidean action. The  exact solution 
of the Euler-Lagrange equations in the imaginary time describing the inhomogeneous 
instanton has the form 

cD(x, t) = kx + constant cos[O(x, t)] = t anh(mt) .  (14) 
In the finite chain the momentum k is quantized and for the periodic boundary condition 
n(t, 0) = n(t, L) ,  which is the only one  compatible with vacuum homogeneity ( n  = 
constant), is given by 

k ,  = (2,z/L)n 

W,, = - E , L  - (L/gm)k% + i0,n. 

n = 0, tl, t 2 , .  . . . (15) 

(16) 

Using (14) and (15) we obtain the following Euclidean action: 

W e  now demonstrate that the tunnelling splitting will not depend on the vacuum 
angle Os, even though the one-instanton action (16) is afunction of Os. The corresponding 
calculations include the summation over all instanton and anti-instanton trajectories 
with a finite action compatible with the boundary conditions. For our double-well 
potential, each instanton is accompanied by the anti-instanton (with opposite-sign 
vacuum angle in the action) and the resulting formula for the tunnelling splitting turns 
out to be  Os independent. 

The  zero mode (n  = 0) in (15) and (16) gives the action of the spatially homogeneous 
instanton trajectory. For n # 0,l W,l > 1 Wol, the probability of vacuum-to-vacuum tun- 
nelling peaks for the instanton solution (10). 

Let us now consider the AFM system with a metastable state and calculate the decay 
rate. The  corresponding Lagrangian is 

Y = (1/g)[(e2 + @ *  sin2 0)/2c2 -f(/veI2 + ~VQ, / ’  sin’ e )  - U] 

U = (w; /2c2)  sin2 e - (0:/4c2) sin4 8.  (17) 
Here c is the speed of the spin waves, and the number n (= 1 , 2 , 3 , .  . . )  of space 
dimensions is arbitrary. Such a Lagrangian is very similar to that in equation (7) but in 
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contrast with equation (7) it is phenomenological for n # 1. The term proportional to 
w:  appears because of the fourth-order anisotropy in the n,-power expansion. Although 
such terms are small in general, they must be taken into account for substances with 
second-order anisotropy to be anomalously small. 

One can easily see that a metastable state exists for o l  > wo. Note that, in contrast 
with the ferromagnetic case, a magnetic field (described by a term - B . S )  does not 
cause the system to have a metastable state since in the main approximation the magnetic 
moments of sublattices are compensated. In fact, the inclusion of a magnetic external 
field leads to a redefinition of the generalized velocity @ + Oj - S2 (Q being the pre- 
cession frequency) only. The above assertion is valid for the collinear phase of an 
antiferromagnet. The case of the spin-flop phase is a separate problem. 

If w 1  > w g ,  6' = in for the metastable state and 8 = 0 for the true ground state. 
Owing to quantum tunnelling, a metastable state decays, forming true-vacuum bubbles. 
The corresponding calculation technique is well known (Coleman 1979). To calculate 
the tunnelling probability one has to find the Euclidean action for spherically symmetric 
solutions of the equation 

d '0 /dr2  + ( n / r )  d%/dr  = sin 8cos  6' (m' - p 2  sin' 0 )  

r = d t 2 c 2  + x' m = wo/c  P = @ , I C  ( 1 8 )  
where t is the Euclidean time. 

AV between a true vacuum and a false vacuum is small: 
Let us restrict ourselves to the thin-wall approximation where the energy difference 

w i  = 2w; ( l -  E )  AV = ~w6/2gc' = m'/2gc2 O < E <  1. ( 1 9 )  
Since in real substances the anisotropy constants cannot be changed by the experimenter, 
the relation (19) is not valid in general. Therefore calculations have an illustrative 
character. They permit us to obtain simple analytical expressions. (In general, one needs 
to calculate the decay rate numerically.) 

The tunnelling probability per unit n-dimensional volume has the form 

T / V ,  = A exp( - W). (20) 

W = iw,[d, / (n  + l ) ] ( r ; ; /gc2)  A -(W/2n)("+1)/2c(wo/c)"+1 (21) 

r0 = ( n / E ) C / 0 " .  

Here the Euclidean action equals 

and the radius of the bubble is 

Depending on the number of dimensions, d ,  equals different values: d ,  = 2n, d2 = 
4n and d 3  = 2n'. Note that in the one-dimensional case (n  = 1 )  for w :  = 20; our model 
(17) reduces to the sine-Gordon model. It has exact solutions (in particular, kinks, i.e. 
topologically stable solitons) 

O(x, t )  = +cos-'{T tanh[m(x - Vt)/.\/l - V' /c2]}  

= tan-'{exp[?m(x - v~)/.\/I - v'/c']> (22)  
which connect the vacuum 8 = 0 with the vacuum 6' = in at space infinities. The rest 
energy of the soliton (22) equals 

E k  = w,/2gc = m/2g. (23) 
In one-dimensional problems ( n  = 1) the tunnelling action ( 2 1 )  can be rewritten in 
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terms of the soliton energy (23) and the vacuum energy difference A V  to take the well 
known form 

w,=, = X E : / C  AV. (24) 
It is interesting that the consideration of quantum tunnelling in antiferromagnets 

turns out to be simpler than that for ferromagnets (Chudnovsky and Gunter 1988b, 
Caldeira and Furuya 1988). This is because classical equations of motion for the AFM 
vector are of second order. The corresponding Lagrangian has the form (17) which allows 
us to use the well known instanton method immediately. Meanwhile, the equations of 
motion of magnetic moments in ferromagnets (the Landau-Lifshitz equation) are first 
order. Therefore additional efforts are necessary to derive the corresponding second- 
order equations (Chudnovsky and Gunter 1988b, Caldeira and Furuya 1988). 

The authors are grateful to A E Borovik and V M Tsukernik for useful discussions. 
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